Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(4): e0176508, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28426783

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0168545.].

2.
PLoS One ; 11(12): e0168545, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27992539

RESUMO

Amongst reduced gravity simulators, the lower body positive pressure (LBPP) treadmill is emerging as an innovative tool for both rehabilitation and fundamental research purposes as it allows running while experiencing reduced vertical ground reaction forces. The appropriate use of such a treadmill requires an improved understanding of the associated neuromechanical changes. This study concentrates on the runner's adjustments to LBPP-induced unweighting and reloading during running. Nine healthy males performed two running series of nine minutes at natural speed. Each series comprised three sequences of three minutes at: 100% bodyweight (BW), 60 or 80% BW, and 100% BW. The progressive unweighting and reloading transitions lasted 10 to 15 s. The LBPP-induced unweighting level, vertical ground reaction force and center of mass accelerations were analyzed together with surface electromyographic activity from 6 major lower limb muscles. The analyses of stride-to-stride adjustments during each transition established highly linear relationships between the LBPP-induced progressive changes of BW and most mechanical parameters. However, the impact peak force and the loading rate systematically presented an initial 10% increase with unweighting which could result from a passive mechanism of leg retraction. Another major insight lies in the distinct neural adjustments found amongst the recorded lower-limb muscles during the pre- and post-contact phases. The preactivation phase was characterized by an overall EMG stability, the braking phase by decreased quadriceps and soleus muscle activities, and the push-off phase by decreased activities of the shank muscles. These neural changes were mirrored during reloading. These neural adjustments can be attributed in part to the lack of visual cues on the foot touchdown. These findings highlight both the rapidity and the complexity of the neuromechanical changes associated with LBPP-induced unweighting and reloading during running. This in turn emphasizes the need for further investigation of the evolution over time of these neuromechanical changes.


Assuntos
Extremidade Inferior/fisiologia , Modelos Biológicos , Contração Muscular/fisiologia , Relaxamento Muscular/fisiologia , Músculo Esquelético/fisiologia , Corrida/fisiologia , Adolescente , Adulto , Fenômenos Biomecânicos , Eletromiografia , Humanos , Masculino
3.
Eur J Appl Physiol ; 115(5): 1135-45, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25566954

RESUMO

PURPOSE: In running, body weight reduction is reported to result in decreased lower limb muscle activity with no change in the global activation pattern (Liebenberg et al. in J Sports Sci 29:207-214). Our study examined the acute effects on running mechanics and lower limb muscle activity of short-term unweighing and reloading conditions while running on a treadmill with a lower body positive pressure (LBPP) device. METHOD: Eleven healthy males performed two randomized running series of 9 min at preferred speed. Each series included three successive running conditions of 3 min [at 100 % body weight (BW), 60 or 80 % BW, and 100 % BW]. Vertical ground reaction force and center of mass accelerations were analyzed together with surface EMG activity recorded from six major muscles of the left lower limb for the first and last 30 s of each running condition. Effort sensation and mean heart rate were also recorded. RESULT: In both running series, the unloaded running pattern was characterized by a lower step frequency (due to increased flight time with no change in contact time), lower impact and active force peaks, and also by reduced loading rate and push-off impulse. Amplitude of muscle activity overall decreased, but pre-contact and braking phase extensor muscle activity did not change, whereas it was reduced during the subsequent push-off phase. CONCLUSION: The combined neuro-mechanical changes suggest that LBPP technology provides runners with an efficient support during the stride. The after-effects recorded after reloading highlight the fact that 3 min of unweighing may be sufficient for updating the running pattern.


Assuntos
Peso Corporal/fisiologia , Corrida/fisiologia , Suporte de Carga/fisiologia , Aceleração , Adolescente , Adulto , Fenômenos Biomecânicos/fisiologia , Eletromiografia , Teste de Esforço , Humanos , Cinética , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...